PHYSICAL REVIEW E

VOLUME 48, NUMBER 2

AUGUST 1993

Correlations, mean-field properties, and scaling of a one-dimensional sandpile model

Sergei Maslov and Zeev Olami
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
(Received 2 December 1992)

We present a general relationship between different scaling exponents for the one-dimensional sand-
pile problem to describe the self-adjusting of the slope of the sandpile. We solve the mean-field theory
for this model, assuming that there is no correlation between the sizes of neighbor clusters. The mean-
field theory does not give the correct exponents, since the clusters are strongly correlated. We character-
ize these correlations, identify the functional form of the cluster distribution function, and show how the
multifractal scaling for averaged quantities arises from this form.

PACS number(s): 64.60.Ht, 05.40.+j, 05.60.+w

A set of problems concerning nonlinear transport have
attracted a great deal of attention lately. Soon after the
introduction of the well-known two-dimensional (2D)
sandpile model by Bak, Tang, and Wiesenfield [1] as an
example of critical self-organization, a limited local (LL)
1D sandpile model was presented by Kadanoff et al. [2].
The original motivation to study this model was the hope
of finding an easy solution, applicable to more complicat-
ed sandpile problems in higher dimensions. However,
after long efforts by various groups [2—6], certain aspects
of this model are still poorly understood. For example,
the functional form of the distribution functions was not
resolved. It was found that different distribution func-
tions scale multifractally [2], and that the model has a set
of nontrivial scaling exponents [3—5]. In [4], the dynam-
ics of the model was claimed to be described by a singular
diffusion equation. However, no direct connection was
made between the “microscopic” properties of the system
and this equation.

In this paper, we try to advance the understanding of
this model in several ways. We first establish a set of re-
lationships between the different local variables, describ-
ing the system. From this, one can construct a global
phenomenology of how the system adjusts its slope and
the cluster sizes close to their critical values. We next
formulate a mean-field theory, assuming that the clusters
are not correlated, and solve it completely. The mean-
field results are not correct due to strong intercluster
correlations. We go one step further, characterizing the
cluster distribution function and the nontrivial correla-
tions that arise in this model. We finally derive the mul-
tifractal scaling analytically.

The LL model is a simple 1D cellular automaton with
a given integer value of “height of sandpile” h; on each
site of the size-L lattice. The system is perturbed by
throwing sand on a randomly chosen site i:

hy—h;+1 . 1)

If the slope z;=h; —h;,, becomes larger than 4, two
grains of sand fall to the nearest downhill site:

hi—h;,—2,
hiv1—hip T2
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This process can generate avalanches, where other sites
will become unstable, and topplings will occur in many
sites. The left edge of the system is open to sand. The
perturbation rate is very low, and perturbations are made
only after the previous avalanche is finished.

It is sometimes convenient to use the slope variables.
In term of slope, the perturbation rule is conservative:

z;—z;+1,

(3)

zi _1—z;_1—1.

The toppling rules for the slope are the following. If
z; >4, then

z;—z;,— 4, @
Zip1—>Zi T2 .

A geometrical description of avalanche clusters is very
useful. In this model, those clusters are defined by their
boundary points, where z; =2. Avalanches are always
stopped at such sites. After [3], we call those sites
troughs. The size of a cluster is the distance between two
neighbor troughs.

We first present some general arguments about the
mean properties of this model. Since each avalanche top-
pling changes the value of slope by an even number, a
change in the oddness of the slope occurs only after per-
turbations [6]. Therefore, as the perturbations are ran-
dom, the densities of sites with slopes of 3 and 4 are
equal. To describe the local properties of the system, we
use the average local slope {z(x)). The density of
troughs at point x is proportional to e(x)=3.5—(z(x)).
Notice that 3.5 is a critical slope, where the cluster and
the avalanche size diverge. We expect all relevant vari-
ables of the system to diverge as powers of the critical
distance €(x). The average cluster size is proportional to
[e(x)]”!. The most important scaling is the scaling of
the sand current, which is mediated through the
avalanches. Since after each toppling two grains of sand
are transported one step down, the current is proportion-
al to the average number of topplings in an avalanche
(s(x)). We assume that it scales as

(s(x))~elx)"7, (5)
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where 7 is a critical exponent.

Using this scaling, we can estimate some stable-state
properties of the model and the way it self-adjusts the
slope. The perturbation is done throughout the system,
but sand can leave it only at the right edge. This implies
a transport constraint on the local current. The average
influx of sand to the left of a point x due to perturbations
is x /L. It should be balanced by the average avalanche
current through this point:

x~(s(x))~elx)"7. (6)
Hence, the average slope profile is
e(x)~x 17, @)

The cluster size will scale as {A(x))~x!/7. Since the
trough density is proportional to €, the total number of
troughs obeys

N~ [Felx)dz~L' 7177 ®)
0

The coarse-grained dynamics of this system was
claimed to be governed by a singular diffusion equation
[4]. To derive this limit, we first notice that the continui-
ty equation for sand implies 8k (x,¢)/3t =3d{s(x,t)) /dx.
Since the slope z(x,t)=0h(x,t)/dx, and the avalanche
size scales with e(x) as (5), we get

dz(x,t) _ 3
ot ox

const 0z(x,t)
[z.—z(x,t)]7""!  ox

9)

This is exactly the phenomenological singular diffusion
equation introduced in [4].

We now make a simple estimate for the value of y.
Two distinct types of avalanches occur in this model. If a
pair of sites with slopes (4,4) is perturbed, the resulting
avalanche will consist of multiple sliding of particles.
For a distance » from the perturbation point to the
nearest left trough, and a cluster size A, the total number
of topplings will be r(A—r). If the perturbed pair is (3,4),
the avalanche will consist of a slide of two particles from
the perturbed site to the nearest right trough. The num-
ber of topplings in such an avalanche is A—r.
Avalanches of the first type are dominant in the sand
transport. Assuming that the probability to start such an
avalanche is the same for every point inside the cluster,
the average avalanche size will scale as A%, Since A~€ !,
we estimate Y =2. The numerical simulations contradict
our estimate of ¥ and instead give y =2.9. We dedicate
the rest of this paper to understanding the mechanisms
for this anomalous scaling and the meaning of our y =2
approximation.

We found it useful to introduce a periodic version of
the LL model. We call it the Escher model [8], since it
resembles Escher’s famous picture of a circular staircase.
On such a fictitious staircase, moving in one direction
will be a constant descent; conversely, in the opposite
direction, it will be a constant ascent. The slope variable
z; is defined on a periodic lattice of size L. The toppling
rules for slope are the same, but there is no longer any
boundary.

The advantage of this model is its homogeneity. The

total slope is conserved in all events, so there is no self-
adjustment of the average slope. The global variable
€=3.5—(z) is determined by the initial configuration
and does not change with time. We can use this to study
the scaling of different averages with €. Numerical simu-
lations give us

(AMy~e 1,
<)\12>~6_2'5 ,

(s)y~e%°,

(10)
< }\3 ) —_~ 673‘7 X
An example of such a scaling is shown in Fig. 1. Those
results display multifractality, in a sense that (A¥) #e~*.
Multifractality was observed in a different context for the
LL model with an open edge in previous papers [2,5].
The exponent y, within the measurement mistakes, is the
same as in the model with an open boundary [4-6].

The first step in investigating of the Escher model is to
determine the average and fluctuations of the total num-
ber of troughs in the system. There are two types of basic
events that change the number of troughs.

(1) Creation, when sand is thrown on the (3,3) pair. No
avalanche will follow, and we will get (2,4), i.e., a new
trough is born.

(2) Coalescence, when sand is thrown on the (4,4).
There will be a large avalanche, destroying the nearest
two troughs and creating one in between them. The total
amount of troughs will be diminished by 1.

From the conservation of the total slope, we obtain the
given number of troughs n:

N
g2
L L
N
__4=%_6+Z£ ,
L L

where N; and N, are the numbers of 3’s and 4’s all over
the system. If € and n /L are small and 3’s and 4’s are
uncorrelated, the probabilities of having (3,3) and (4,4)
are, respectively,

10° ; ——

10* b 4
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FIG. 1. As an example, we show the scaling of (A?) vs e.
The scaling is very clean. The exponent is —2.5. The simula-
tions were performed on a system of size L =4000.
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So the master equation for the total number of troughs
is

n n 1 2n n—1
Pt+1 f _%Pt f + :+6—T P, L
1 2n n+1
+ |——€e+— R
AR L I

where P,(x) is probability of having the density of
troughs equal to x at time ¢. Expanding P,(n/L+1/L)
up to the second order in 1/L, we get

P, (x)—P,(x)

d 1 4’
(4x 2€)de,(x)+4L il

1

L

Px)|.

The steady-state solution of this equation is

P(x)= —8L(x—e€/2)?],
exl ] (12)
p(n)=exp —-%{n—eL/Z)2

»

where p(n) is the probability of having n troughs in the
system.

The average density of troughs in the steady state is
€/2. The average cluster size is

(AY=2/¢. (13)

The trough number is sharply peaked at €L /2. Since
fluctuations scale as L'/2, they can be neglected in a large
enough system. Numerical simulations confirm those
predictions. It was already noted that the LL model
displays a similar behavior [6]. However, as was men-
tioned by Krug, the width of this distribution scales as
L%3*, Notice that for both boundary conditions the
trough number fluctuates as the square root of its aver-
age.

The next natural step is to introduce P(A), the proba-
bility of having a cluster of size A. The scaling properties
of the avalanches are determined by this distribution.
The average avalanche size, for instance, can be found in
the following way. The probability of hitting a cluster of
size A is proportional to A. Therefore, the proper distri-
bution function for averaging the avalanche size is
P (A)=AP(A)/{A). Assuming that the probability of
initiating an avalanche is the same for all points inside
the cluster [7], i.e., that clusters have no internal struc-
ture, the scaling of the average avalanche is
(sy=(A*)/{(r).

The master equation for this probability distribution
can be derived using the basic mechanisms of trough
creation and coalescence, and assuming equal probabili-
ties for creation and coalescence events. Namely, the

probability that a cluster of size A will be split in two by
the creation of a trough inside it is proportional to AP(A).
The probability that the cluster will be destroyed by the
coalescence event is [A+2A(A)]P(A), where A(A) is the
average size of the cluster neighboring A. The probability
that a cluster of size A will be created by splitting a larger
one is 23 ;.. ,P(A'). And, finally the probability that a
new cluster of size A will be created as a result of a
coalescence event, is 23414 >AP(A',A""), where P(A',A")
is the probability of having two neighboring clusters of
sizes A',A"". Combining these probabilities into the mas-
ter equation, we get

BPR) — P —[A+2AW]P(+2 S, P(L)
ot A>A
+2 3 P,AY). 14
MHATSA
A <A

This master equation is quite complicated. To obtain
some understanding of it, we assume that clusters are not
correlated. From this mean-field assumption, we get

(1) P(A,A"")=P(A")P(A"),

(2) A(A) does not depend on A, and is equal to (A ).

Now the master equation is closed. It can easily be
shown that the solution of it has the exponential form

P(A)~exp(—A/{A)) . (15)

This implies that {(A*) must scale like (A )%, i.e., like e .
Our previous estimate ¥ =2 is now understood to be the
result of the mean-field approximation. It is interesting
to observe that the same exponential distribution, known
as the Poisson distribution, arises when we randomly
throw n points to an interval of size L and look at the dis-
tribution of the intervals L cut by those points. Here, as
in our model, (A)=L /n.

To check that our understanding of the mean-field
model is correct, we simulated a version of the original
Escher model, where, each time before, the addition of
sand clusters had been randomly mixed. Possible spatial
correlations between two nearby clusters were destroyed
by hand. This model indeed has ¥ =2 and the Poisson
distribution function P(A)~exp(—A/{A)).

The Escher model itself is much less trivial, as was in-
dicated by the multifractal scaling of the averages. There
we found the following functional form of P (A):

P(A)~exp[ —b(e)nA] , (16)

where S =3.9 is very close to 4. To show this, in Fig. 2
we present the dependence of InP(A) versus InA. This
functional form fits very well for small enough €. The
distribution functions in the LL model can also be de-
scribed by similar expressions with very close exponents.
For example, the drop-number distribution is character-
ized by S =4.2.

All the scaling exponents can be derived from this
functional form. To get an approximate analytical ex-
pressions for {(A¥), we use the saddle-point approach in
calculation of the average f o A¥P(L)dA. The expression
under integral reaches its maximum at A,,,, x, such that
k=Sb(e)In®"'A_ . .. Approximately, {(A*)=Ak, ..
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FIG. 2. The dependence log,o[ P(0)/P()\)]~logiA is shown
on the figure, using a double logarithmical scale. The exponent
S is evaluated as 3.9. The system parameters are L =8000 and
€=0.025.

Combining this with the constraint (13) that (A)~¢e ™!
we can estimate b(e)=1/(const—Ine)S ~!. So we get

(AKY ~ k7570 17)

’

This is a reasonable estimate for the numerical results
(10).

For example, for kK =2, we get (M) ~€ , which is in
good agreement with the numerically calculated critical
index.

The failure of the mean-field theory is obviously related
to the correlations between neighboring clusters. To ob-
tain further insight into the problem, we measure numeri-
cally the conditional average A(A).

Unlike the mean-field version, this is not a constant.
The A dependence has the following form:

AMA)=c(e)+d(e)n>BA . (18)

—2.5

The example of this dependence is given in Fig. 3. The
clusters are obviously highly correlated: the larger the
cluster, the larger will be its average environment.

To conclude, we found how the sandpile organizes the
scale of its clusters to balance the current of sand. The
local average cluster size changes with the position.
Therefore, one cannot speak of a single length scale in

N \ 1 :
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FIG. 3. The conditional average A(A) is shown to have the
form ¢ +dlogi;\, where S'~3.8 is very close to the value of the
exponent S from the previous figure. The system parameters are
L =4000 and €=0.05.

this problem. We presented a closed mean-field theory,
giving all the distribution functions and scaling exponents
for the LL and Escher models. The contradiction be-
tween these exponents and those from the numerical
simulations is related to the strong correlations in sizes of
neighbor clusters. Finally, we have shown the correct
form of the cluster distribution function. Using this sim-
ple analytic form, we can explain the multifractal proper-
ties of the model and the anomalous transport exponents
observed for it.

We still do not understand why this form of correlation
and distribution functions arises in this system. This is a
subject of ongoing research. Another interesting ques-
tion is whether the singular diffusion equation gives a
proper description of the temporal behavior of this mod-
el. This is not clear, because the system needs time to
build up the correlations, which are, as we know now, re-
sponsible for the anomalous y. The initial studies of the
subject verify our doubts.

We thank P. Bak and K. Christensen for useful discus-
sions. Both authors appreciate the support and hospitali-
ty of Brookhaven National Laboratory. This work was
supported by the Division of Basic Energy Sciences, U.S.
DOE under Contract No. DE-AC02-76 CH00016.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59,
381 (1987).

[2] L. Kadanoff, S. Nagel, L. Wu, and S. Zhou, Phys. Rev. A
39, 6524 (1989).

[3]1J. M. Carlson, J. T. Chayes, E. R. Grannan, and G. H.
Swindle, Phys. Rev. A 42, 2467 (1990).

[4]J. M. Carlson, J. T. Chayes, E. R. Grannan, and G. H.
Swindle, Phys. Rev. Lett. 65, 2547 (1990).

[5]J. Krug, J. Stat. Phys. 66, 1635 (1992).

[6] L. P. Kadanoff, A. B. Chhabra, A. Kolan, M. J. Feigen-

baum, and I. Procaccia, Phys. Rev. A 45, 6095 (1992).

[7] Our numerical simulations confirm that this is true for
large enough clusters. Generally, we have observed an ex-
ponential behavior for P,(x,A)—the probability to have 4
at a distance x from the left edge of cluster of size A:
Pyx,A)=Aexp(—x/l)+Bexp[—(A—x)/I]+C. In
this expression, 4, B, C, and 1 are some constants, depen-
dent on A and e. The larger the cluster, the flatter this
profile.

[8] This name for the model was suggested by Per Bak.



